Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Elucidating the evolutionary history and expression patterns of nucleoside phosphorylase paralogs (vegetative storage proteins) in Populus and the plant kingdom.

Identifieur interne : 002706 ( Main/Exploration ); précédent : 002705; suivant : 002707

Elucidating the evolutionary history and expression patterns of nucleoside phosphorylase paralogs (vegetative storage proteins) in Populus and the plant kingdom.

Auteurs : Emily A. Pettengill [États-Unis] ; James B. Pettengill ; Gary D. Coleman

Source :

RBID : pubmed:23957885

Descripteurs français

English descriptors

Abstract

BACKGROUND

Nucleoside phosphorylases (NPs) have been extensively investigated in human and bacterial systems for their role in metabolic nucleotide salvaging and links to oncogenesis. In plants, NP-like proteins have not been comprehensively studied, likely because there is no evidence of a metabolic function in nucleoside salvage. However, in the forest trees genus Populus a family of NP-like proteins function as an important ecophysiological adaptation for inter- and intra-seasonal nitrogen storage and cycling.

RESULTS

We conducted phylogenetic analyses to determine the distribution and evolution of NP-like proteins in plants. These analyses revealed two major clusters of NP-like proteins in plants. Group I proteins were encoded by genes across a wide range of plant taxa while proteins encoded by Group II genes were dominated by species belonging to the order Malpighiales and included the Populus Bark Storage Protein (BSP) and WIN4-like proteins. Additionally, we evaluated the NP-like genes in Populus by examining the transcript abundance of the 13 NP-like genes found in the Populus genome in various tissues of plants exposed to long-day (LD) and short-day (SD) photoperiods. We found that all 13 of the Populus NP-like genes belonging to either Group I or II are expressed in various tissues in both LD and SD conditions. Tests of natural selection and expression evolution analysis of the Populus genes suggests that divergence in gene expression may have occurred recently during the evolution of Populus, which supports the adaptive maintenance models. Lastly, in silico analysis of cis-regulatory elements in the promoters of the 13 NP-like genes in Populus revealed common regulatory elements known to be involved in light regulation, stress/pathogenesis and phytohormone responses.

CONCLUSION

In Populus, the evolution of the NP-like protein and gene family has been shaped by duplication events and natural selection. Expression data suggest that previously uncharacterized NP-like proteins may function in nutrient sensing and/or signaling. These proteins are members of Group I NP-like proteins, which are widely distributed in many plant taxa. We conclude that NP-like proteins may function in plants, although this function is undefined.


DOI: 10.1186/1471-2229-13-118
PubMed: 23957885
PubMed Central: PMC3751785


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Elucidating the evolutionary history and expression patterns of nucleoside phosphorylase paralogs (vegetative storage proteins) in Populus and the plant kingdom.</title>
<author>
<name sortKey="Pettengill, Emily A" sort="Pettengill, Emily A" uniqKey="Pettengill E" first="Emily A" last="Pettengill">Emily A. Pettengill</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science and Landscape Architecture, University of Maryland, Plant Science Building, College Park, Maryland 20742, USA. emilyannpettengill@gmail.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Science and Landscape Architecture, University of Maryland, Plant Science Building, College Park, Maryland 20742</wicri:regionArea>
<orgName type="university">Université du Maryland</orgName>
<placeName>
<settlement type="city">College Park (Maryland)</settlement>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pettengill, James B" sort="Pettengill, James B" uniqKey="Pettengill J" first="James B" last="Pettengill">James B. Pettengill</name>
</author>
<author>
<name sortKey="Coleman, Gary D" sort="Coleman, Gary D" uniqKey="Coleman G" first="Gary D" last="Coleman">Gary D. Coleman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23957885</idno>
<idno type="pmid">23957885</idno>
<idno type="doi">10.1186/1471-2229-13-118</idno>
<idno type="pmc">PMC3751785</idno>
<idno type="wicri:Area/Main/Corpus">002498</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002498</idno>
<idno type="wicri:Area/Main/Curation">002498</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002498</idno>
<idno type="wicri:Area/Main/Exploration">002498</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Elucidating the evolutionary history and expression patterns of nucleoside phosphorylase paralogs (vegetative storage proteins) in Populus and the plant kingdom.</title>
<author>
<name sortKey="Pettengill, Emily A" sort="Pettengill, Emily A" uniqKey="Pettengill E" first="Emily A" last="Pettengill">Emily A. Pettengill</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science and Landscape Architecture, University of Maryland, Plant Science Building, College Park, Maryland 20742, USA. emilyannpettengill@gmail.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Science and Landscape Architecture, University of Maryland, Plant Science Building, College Park, Maryland 20742</wicri:regionArea>
<orgName type="university">Université du Maryland</orgName>
<placeName>
<settlement type="city">College Park (Maryland)</settlement>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pettengill, James B" sort="Pettengill, James B" uniqKey="Pettengill J" first="James B" last="Pettengill">James B. Pettengill</name>
</author>
<author>
<name sortKey="Coleman, Gary D" sort="Coleman, Gary D" uniqKey="Coleman G" first="Gary D" last="Coleman">Gary D. Coleman</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Duplication (MeSH)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Pentosyltransferases (genetics)</term>
<term>Pentosyltransferases (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants (chemistry)</term>
<term>Plants (classification)</term>
<term>Plants (enzymology)</term>
<term>Plants (genetics)</term>
<term>Populus (classification)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Duplication de gène (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Pentosyltransferases (génétique)</term>
<term>Pentosyltransferases (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Plantes (classification)</term>
<term>Plantes (composition chimique)</term>
<term>Plantes (enzymologie)</term>
<term>Plantes (génétique)</term>
<term>Populus (classification)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Pentosyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Pentosyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Plants</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Plantes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Plantes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plants</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plants</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Pentosyltransferases</term>
<term>Plantes</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Pentosyltransferases</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Evolution, Molecular</term>
<term>Gene Duplication</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Plant</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Duplication de gène</term>
<term>Famille multigénique</term>
<term>Phylogenèse</term>
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquence d'acides aminés</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Nucleoside phosphorylases (NPs) have been extensively investigated in human and bacterial systems for their role in metabolic nucleotide salvaging and links to oncogenesis. In plants, NP-like proteins have not been comprehensively studied, likely because there is no evidence of a metabolic function in nucleoside salvage. However, in the forest trees genus Populus a family of NP-like proteins function as an important ecophysiological adaptation for inter- and intra-seasonal nitrogen storage and cycling.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We conducted phylogenetic analyses to determine the distribution and evolution of NP-like proteins in plants. These analyses revealed two major clusters of NP-like proteins in plants. Group I proteins were encoded by genes across a wide range of plant taxa while proteins encoded by Group II genes were dominated by species belonging to the order Malpighiales and included the Populus Bark Storage Protein (BSP) and WIN4-like proteins. Additionally, we evaluated the NP-like genes in Populus by examining the transcript abundance of the 13 NP-like genes found in the Populus genome in various tissues of plants exposed to long-day (LD) and short-day (SD) photoperiods. We found that all 13 of the Populus NP-like genes belonging to either Group I or II are expressed in various tissues in both LD and SD conditions. Tests of natural selection and expression evolution analysis of the Populus genes suggests that divergence in gene expression may have occurred recently during the evolution of Populus, which supports the adaptive maintenance models. Lastly, in silico analysis of cis-regulatory elements in the promoters of the 13 NP-like genes in Populus revealed common regulatory elements known to be involved in light regulation, stress/pathogenesis and phytohormone responses.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>In Populus, the evolution of the NP-like protein and gene family has been shaped by duplication events and natural selection. Expression data suggest that previously uncharacterized NP-like proteins may function in nutrient sensing and/or signaling. These proteins are members of Group I NP-like proteins, which are widely distributed in many plant taxa. We conclude that NP-like proteins may function in plants, although this function is undefined.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23957885</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>10</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<PubDate>
<Year>2013</Year>
<Month>Aug</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Elucidating the evolutionary history and expression patterns of nucleoside phosphorylase paralogs (vegetative storage proteins) in Populus and the plant kingdom.</ArticleTitle>
<Pagination>
<MedlinePgn>118</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-13-118</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Nucleoside phosphorylases (NPs) have been extensively investigated in human and bacterial systems for their role in metabolic nucleotide salvaging and links to oncogenesis. In plants, NP-like proteins have not been comprehensively studied, likely because there is no evidence of a metabolic function in nucleoside salvage. However, in the forest trees genus Populus a family of NP-like proteins function as an important ecophysiological adaptation for inter- and intra-seasonal nitrogen storage and cycling.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We conducted phylogenetic analyses to determine the distribution and evolution of NP-like proteins in plants. These analyses revealed two major clusters of NP-like proteins in plants. Group I proteins were encoded by genes across a wide range of plant taxa while proteins encoded by Group II genes were dominated by species belonging to the order Malpighiales and included the Populus Bark Storage Protein (BSP) and WIN4-like proteins. Additionally, we evaluated the NP-like genes in Populus by examining the transcript abundance of the 13 NP-like genes found in the Populus genome in various tissues of plants exposed to long-day (LD) and short-day (SD) photoperiods. We found that all 13 of the Populus NP-like genes belonging to either Group I or II are expressed in various tissues in both LD and SD conditions. Tests of natural selection and expression evolution analysis of the Populus genes suggests that divergence in gene expression may have occurred recently during the evolution of Populus, which supports the adaptive maintenance models. Lastly, in silico analysis of cis-regulatory elements in the promoters of the 13 NP-like genes in Populus revealed common regulatory elements known to be involved in light regulation, stress/pathogenesis and phytohormone responses.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">In Populus, the evolution of the NP-like protein and gene family has been shaped by duplication events and natural selection. Expression data suggest that previously uncharacterized NP-like proteins may function in nutrient sensing and/or signaling. These proteins are members of Group I NP-like proteins, which are widely distributed in many plant taxa. We conclude that NP-like proteins may function in plants, although this function is undefined.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pettengill</LastName>
<ForeName>Emily A</ForeName>
<Initials>EA</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Science and Landscape Architecture, University of Maryland, Plant Science Building, College Park, Maryland 20742, USA. emilyannpettengill@gmail.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pettengill</LastName>
<ForeName>James B</ForeName>
<Initials>JB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Coleman</LastName>
<ForeName>Gary D</ForeName>
<Initials>GD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>08</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.2.-</RegistryNumber>
<NameOfSubstance UI="D010430">Pentosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.2.-</RegistryNumber>
<NameOfSubstance UI="C067995">nucleoside phosphorylase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="N">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="Y">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010430" MajorTopicYN="N">Pentosyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>04</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>08</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23957885</ArticleId>
<ArticleId IdType="pii">1471-2229-13-118</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-13-118</ArticleId>
<ArticleId IdType="pmc">PMC3751785</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1999 Apr;151(4):1531-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10101175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Mar;128(3):793-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11891236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):395-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17293565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):1157-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15654095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2012 Dec 1;510(2):154-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22967797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 7;411(6838):709-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Aug 7;454(7205):762-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18594508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2002 Jan 1;361(Pt 1):1-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(1):117-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19413687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Jan 1;24(1):129-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Cancer. 2012 Jan 17;106(2):405-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22068816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2006 Oct;44(10):551-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17064924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2007 Dec;17(6):505-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2009;17(5):699-717</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19802709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3853-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19223592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Nov;97(3):1017-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2012 Nov;29(11):3541-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22734049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Investig Drugs. 2006 Dec;15(12):1601-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17107284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Oct;23(10):3654-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22028461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17519-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23045684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Oct;48(10):1484-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17872919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1994 Oct;14(10):1107-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14967621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):12-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1982 Aug;70(2):344-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Aug 12;19(12):1572-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12912839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011;12:238</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21679436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 2009 Apr;135(3):309-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18568430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Nov;72(3):461-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22757964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2012;13(1):R3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22280555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20178595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Dec;225(1):115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 May;126(1):342-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):383-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12520028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Jan;22(1):95-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21974993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2008 Apr;4(4):e1000071</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18437229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Sep;30(9):1083-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20551251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 2;279(14):13547-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14726515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2006 Mar;273(6):1089-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16519676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1989 Jun;178(3):275-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24212893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):165-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Mar;24(3):339-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14704143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Feb;190(2):737-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22143920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Dec;6(24):6509-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17163438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Feb;11(2):97-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20051986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2730-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16467140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 May 1;21(9):2104-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15647292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1991 Dec;183(1):92-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24193538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2006 Dec;22(12):642-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17045359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Mar 1;21(5):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15509596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Nov;28(11):3033-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21670087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Oct;8(10):803-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17878896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2011;3:1197-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21920903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jan;154(1):459-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10629003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Mar;65(5):703-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21235647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 May;54(3):496-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18266920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Apr;66(6):619-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18247136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Jul;96(3):686-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7584402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2013 Mar;14(2):225-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Sep;61(14):3947-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20826506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 10;290(5494):1151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2008 May;40(5):676-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9903-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15161969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e43822</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22937104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Jul;16(7):381-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21482173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Dec;7(12):e1002411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Sep;106(1):211-215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Popul Biol. 2011 Nov;80(3):197-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21801738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1999 Oct;145 ( Pt 10):2957-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10537218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Mar;178(3):1385-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18245342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2010 Oct;26(10):425-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20708291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Sep;30(9):1047-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20696885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jul;16(7):805-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16818725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1995 Jun;28(3):549-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7632923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2005 Jan;21(1):33-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:561</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19036138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Periodontal Res. 2010 Oct;45(5):664-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20572921</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
<settlement>
<li>College Park (Maryland)</li>
</settlement>
<orgName>
<li>Université du Maryland</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Coleman, Gary D" sort="Coleman, Gary D" uniqKey="Coleman G" first="Gary D" last="Coleman">Gary D. Coleman</name>
<name sortKey="Pettengill, James B" sort="Pettengill, James B" uniqKey="Pettengill J" first="James B" last="Pettengill">James B. Pettengill</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Pettengill, Emily A" sort="Pettengill, Emily A" uniqKey="Pettengill E" first="Emily A" last="Pettengill">Emily A. Pettengill</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002706 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002706 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23957885
   |texte=   Elucidating the evolutionary history and expression patterns of nucleoside phosphorylase paralogs (vegetative storage proteins) in Populus and the plant kingdom.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23957885" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020